Error estimations for some meshless boundary interpolation methods

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Posteriori Error Bounds for Meshless Methods

We show how to provide safe a–posteriori error bounds for numerical solutions of well-posed operator equations using kernel–based meshless trial spaces. The presentation is kept as simple as possible in order to address a larger community working on applications in Science and Engineering. 1 Operator Equations Most contributions within application–oriented conferences only present numerical res...

متن کامل

Error estimates for some quasi-interpolation operators

‖u− Ihu‖L2(T ) ≤cThT ‖∇ku‖L2(ω̃T ), ‖u− Ihu‖L2(E) ≤cEh E ‖∇ku‖L2(ω̃E). Here, k ∈ {1, 2}, Ih is some quasi-interpolation operator, T and E are a simplex and a face thereof, hT and hE measure the size of T and E, and ω̃T and ω̃E are neighbourhoods of T and E which should be as small as possible. Note that the interpolate Ihu never needs to be computed explicitely. Moreover, for problems in two and th...

متن کامل

A Boundary Meshless Method for Neumann Problem

Boundary integral equations (BIE) are reformulations of boundary value problems for partial differential equations. There is a plethora of research on numerical methods for all types of these equations such as solving by discretization which includes numerical integration. In this paper, the Neumann problem is reformulated to a BIE, and then moving least squares as a meshless method is describe...

متن کامل

A posteriori error estimations of some cell-centered finite volume methods

This paper presents an a posteriori residual error estimator for diffusion-convectionreaction problems approximated by some cell centered finite volume methods on isotropic or anisotropic meshes in Rd, d = 2 or 3. For that purpose we built a reconstructed approximation, which is an appropriate interpolant of the finite volume solution. The error is then the difference between the exact solution...

متن کامل

Reproducing Polynomial(Singularity) Particle Methods and Adaptive Meshless Methods for 2-Dim Elliptic Boundary Value Problems

Oh et al ([25]) introduced the reproducing polynomial particle (RPP) shape functions that are piecewise polynomial and satisfy the Kronecker delta property. In this paper, we introduce RPPM (Reproducing Polynomial Particle Methods) that is the Galerkin approximation method associated with the use of the RPP approximation space. Planting particles in the computation domain in a patchwise uniform...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: PAMM

سال: 2004

ISSN: 1617-7061

DOI: 10.1002/pamm.200410301